If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+13k+10=0
a = 3; b = 13; c = +10;
Δ = b2-4ac
Δ = 132-4·3·10
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-7}{2*3}=\frac{-20}{6} =-3+1/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+7}{2*3}=\frac{-6}{6} =-1 $
| 7/6b=14 | | 19x-37=115 | | m(3-4m)=7+(8-m2) | | 8p+19=51 | | 6x-5=43.X= | | b^2+2b-15b=0 | | d=4.9(12.26)^2 | | 45+20+x=180 | | d=4.9(12.6)^2 | | 2(3x-4)+2=10x-2(2x+4) | | -4x+9x-5=35 | | 6n+6=N+3 | | d=4.9(3.92)^2 | | 3v-6=8v+1 | | 3(3x-1)=4x+12 | | 6b-2=8b+8 | | 7r+8=5r-4 | | 4n-7=6n+2 | | y-8.92=3.7 | | -4n+5=1-5n | | 5m-6=6m+1 | | 13+9u=76 | | b^2+2b^2-15b=0 | | 5^2x=160 | | 2y-37=62 | | N+5=8n-3 | | 8x+8=x+2 | | 1.75x+6=2.25x+4.50 | | 11-8x=221 | | 6p+3=3p+6 | | 2k+6=5k+3 | | 3(22-3y)+y+22=48 |